RSLGym
Release 0.2.0

Takahiro Miki, Joonho Lee, Yuntao Ma, Pascal Egli

Mar 11, 2022

CONTENTS

Install Dependencies 3
1.1 Folder Setup o e e e e e e e e 3
1.2 RaiSimLib e e 3
1.3 RaiSimOgre e e 4
L4 PyBindll o o e e 4
Install RSLGym 5
2.1 Virtualenvo e e e 5
2.2 PyTorch o o e e e e e e e e e e e e 5
23 RSLGYmM o e 5
24 Other Dependencies e 6
Examples 7
3.1 RaiSimCartPole e 7
3.2 RaiSim ANYmal Bear e e 8
33 OpenAIGym e e 9
Create Your Own Environment 11
4.1 Building, Namingand Usage i e e e e e e e 12
4.2 Debugging e e e e e e 12
4.3 Additional Libraries e e e 12

RSLGym, Release 0.2.0

This is the reinforcement learning framework from the Robotics System Lab (RSL) at ETH Zurich.
It provides an interface to train reinforcement learning agents that are simulated in the RaiSim physics engine.

For efficiency, experience generation in RaiSim is parallelized using a vectorized environment in C++. The vectorized
environment is wrapped using pybind11 such that it can be used with RL algorithms implemented in python.

Currently, we provide examples for training agents with custom PPO and TRPO implementations and the algorithms
provided by PFRL (https://github.com/pfnet/pfrl) which are implemented using pyTorch.

CONTENTS 1

https://github.com/pfnet/pfrl

RSLGym, Release 0.2.0

2 CONTENTS

CHAPTER
ONE

INSTALL DEPENDENCIES

1.1 Folder Setup

To avoid conflicts with other libs it is recommended to install everything locally. Therefore you will need two folders:
* WORKSPACE: where you clone all the git repos (e.g. ~/rslgym_ws)
* LOCAL_INSTALL: where you install all the libs (e.g. ~/rslgym_build)

Define the LOCAL_INSTALL variable in your .bashrc and add it to the library search path, i.e. add the following lines
to ~/.bashrec:

export LOCAL_INSTALL=/home/<user_account>/rslgym_build
export LD_LIBRARY_PATH=$LOCAL_INSTALL/lib:$LD_LIBRARY_PATH

1.2 RaiSimLib

Install the RaiSim rigid body simulator.

* Clone repo and install additional dependencies:

cd $WORKSPACE
git clone https://github.com/raisimTech/raisimLib.git
sudo apt install cmake

Install python3 depencency:

sudo apt install python3-dev

Follow RaiSim installation instructions: https://raisim.com/sections/Installation.html
* To use RaiSim you need a valid license. You can apply for it here: https://raisim.com/sections/License.html
* Place the license in ~/.raisim and rename the file to activation.raisim (create the folder if necessary)

— The license can also be placed at another location. This needs to be specified when instantiating the vec-
torized environment in python, see rslgym/ wrapper/ script/ RaisimGymVecEnv.py.

https://raisim.com/sections/Installation.html
https://raisim.com/sections/License.html

RSLGym, Release 0.2.0

1.3 RaiSimOgre

Install the ogre visualizer for RaiSim.

 Follow the instructions here: https://github.com/raisimTech/raisimOgre

1.4 PyBind11

Install the PyBind11 library:

cd $WORKSPACE/raisimLib/thirdParty/pybindl1l

mkdir build

cd build

cmake .. -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=$LOCAL_INSTALL -DPYBIND11_
—TEST=FALSE

make install

4 Chapter 1. Install Dependencies

https://github.com/raisimTech/raisimOgre

CHAPTER
TWO

INSTALL RSLGYM

2.1 Virtualenv

To avoid conflicts with other libs it is recommended to install everything locally in a virtual environment:

pip3 install virtualenv
mkdir ~/.virtualenvs
pip3 install virtualenvwrapper

Add the following lines to ~/.bashrec:

export WORKON_HOME=~/.virtualenvs
export VIRTUALENVWRAPPER_PYTHON=/usr/bin/python3
source ~/.local/bin/virtualenvwrapper.sh

Open a new terminal tab and create your virtual environment:

source ~/.profile
mkvirtualenv --system-site-packages rslgym

2.2 PyTorch

Activate the virtualenvironment (if not already active):

workon rslgym

Install the latest stable version of PyTorch using pip following the instructions here https://pytorch.org/get-started/
locally/

2.3 RSLGym

Clone and install RSLGym (inside the virtual environment):

cd $WORKSPACE

git clone <rslgym_repo>
cd rslgym

pip3 install -e .

https://pytorch.org/get-started/locally/
https://pytorch.org/get-started/locally/

RSLGym, Release 0.2.0

2.4 Other Dependencies

Yaml-cpp for hyperparameter loading:

sudo apt install libyaml-cpp-dev

Dependencies for openAl examples:

sudo apt install ubuntu-restricted-extras swig

Valgrind for debugging environment.hpp:

sudo apt install valgrind

Chapter 2. Install RSLGym

CHAPTER
THREE

EXAMPLES

We provide examples for training RL agents that are simulated in RaiSim and the openAI Gym.
The examples are located in rslgym/examples/envs.

To run the examples that use PFRL algorithms install PFRL in your virtual environment:

pip3 install pfrl

To run the openAl box2D examples install box2D:

pip3 install box2d-py box2d-kengz

3.1 RaiSim Cart Pole

¥ RaiSim Applicatic

Vis ation

0.000000 balar
» Simulation
Object data
Contacts
Video recording
Object List

Simple cart pole balancing example using RaiSim.

With the provided hyperparameters the agent is able to balance the pole. However, the performance can always be
improved with more tuning. Feel free to contribute if you find better settings.

1. Activate your virtual python environment:

workon <name-of-rslgym-virtualenv>

2. Build the cart pole environment. Inside rslgym/examples/envs/cart_pole run:

rslgym build . --name cart_pole --CMAKE_PREFIX_ PATH $LOCAL_INSTALL

3. Train the cart pole agent running the *_train.py scrips in cart_pole/scripts.

RSLGym, Release 0.2.0

The scripts regularly test the current performance of the agent and store the weights of the neural networks
and a video in cart_pole/runs/<time_and_data_when_training_started>.

The training configuration and hyperparameters can be configured in the cfg.yaml file:

./rsl_ppo_train.py --cfg_name=<optional-path-to-cfg-default:cfg.yaml>

4. The learning progress can be monitored using tensorboard. In another terminal, activate your virtual environ-
ment and run:

tensorboard --logdir=<absolute-path-to-folder-containing-training-weights>

5. The performance of the agent can also be tested using the *_test.py scripts. Videos of the tests are stored in the
folder where the policy weights are stored. In the folder testing <tested_iteration>:

./rsl_ppo_test.py --weight <path_to_folder_with_weights> -i <iteration_to_test>

3.2 RaiSim ANYmal Bear

-0.357292 1o

rorwa

ANYmal

Simple locomotion example with ANYmal Bear in RaiSim.

To train the agent, follow the same steps as in the cart_pole example above. Build the environment with the name
anymal:

rslgym build . --name anymal --CMAKE_PREFIX PATH $LOCAL_INSTALL

8 Chapter 3. Examples

RSLGym, Release 0.2.0

3.3 OpenAl Gym

Example of training openAl gym environments with PPO.

No need to compile anything. Just run the training scripts in your virtual environment.

3.3. OpenAl Gym 9

RSLGym, Release 0.2.0

10 Chapter 3. Examples

CHAPTER
FOUR

CREATE YOUR OWN ENVIRONMENT

You need to implement a single environment instance. The frameworks parallelizes this single environment by creating
a vectorized environment.

Your environment needs to have at least Environment.hpp which inherits from
rslgym/rslgym/wrapper/include/RaisimGymEnvBase.hpp:

virtual void init() = 0;

virtual void reset() = 0; // resets environment at the beginning or when terminated
virtual void setSeed(int seed) = 0; // sets random number generator(s) seed(s)

virtual void observe(Eigen::Ref<EigenVec> ob) = 0; // returns environment observations
virtual float step(const Eigen::Ref<EigenVec>& action) = 0; // returns reward

virtual bool isTerminalState(float& terminalReward) = 0; //substitutes terminal reward
virtual void setInfo(const std::unordered_map<std::string, EigenVec>& info) = 0; //.
—transfer info to the environment

virtual void updateInfo() {}; //transfer info from the environment

setInfo() and updatelInfo() allow you to transfer information from the python code to the environment and the other way
around. This can be useful to monitor variables in the environment or to update curriculum factors in the environment.

You can define any additional info to this variable like below. This will be a dictionary on the python side:

void updateInfo() final {
info_["gc"] = gc_.cast<float>(Q);
info_["gv"] = gv_.cast<float>(Q);
info_["rewards"] = Eigen::Vector2d(torqueReward_, forwardVelReward_).cast<float>(Q);

}

In the same way, you can get python dictionary data from python side in Environment.hpp:

void setInfo(const std::unordered_map<std::string, EigenVec>& info) {
for (auto &kv: info) {
const auto& key = kv.first;
const auto& value = kv.second;
// do whatever based on info from python
// if(key == "curriculum")
// updateCurriculum(value);

11

RSLGym, Release 0.2.0

4.1 Building, Naming and Usage

You can define the name under which the python module will be built in the environment.hpp.

#define ENVIRONMENT_NAME <my-env-name>

When building the environment, you can pass the name of the python package which will be called
rslgym_wrapper_<your_package_name>:

rslgym build . --name <your_package_name> --CMAKE_PREFIX_PATH $LOCAL_INSTALL

Then, in python, you can include the environment using:

from rslgym_wrapper_<your_package_name> import <my-env-name>

For more information about the build function, call:

rslgym build --help

4.2 Debugging

To debug your environment.hpp and catch e.g. nasty segmentation faults you can build your environment using the
—debug flag:

rslgym build . --name cart_pole --debug --CMAKE_PREFIX_PATH $LOCAL_INSTALL

This will create a c++ executable which you can debug with valgrind using this command:

rslgym debug <render/no_render> --name cart_pole --resource <relative-path-to-rsc-folder-
—default:/rsc> --cfg <relative-path_to_cfg-default:/cfg.yaml>

For more information about the debug function, call:

rslgym debug --help

4.3 Additional Libraries

RSLGym includes and links raisim, eigen3 and OpenMP libraries. If you want to use additional libraries in your
environment, you can add prebuilt or custom libraries to the CMake variable EXTRA_LIBS through a CMake include
file. Note that the libraries must be built with -fPIC option:

rslgym build . --name <your_package_name> --CMAKE_INCLUDE_FILE <path_to_my_cmake_include_
~file>

An example of a CMake include file to build custom libraries can be found below.

add_library(<MY_LIBRARY_NAME> ${CMAKE_CURRENT_LIST_DIR}/<path_to_my_source_code_relative_
—to_this_file>.cpp)

target_include_directories(<MY_LIBRARY_NAME> PUBLIC ${CMAKE_CURRENT_LIST_DIR}/<path_to_
—my_include_directories>)

(continues on next page)

12 Chapter 4. Create Your Own Environment

RSLGym, Release 0.2.0

(continued from previous page)

target_compile_options(<MY_LIBRARY_NAME> PRIVATE -mtune=native -fPIC -03)
set (EXTRA_LIBS <MY_LIBRARY_NAME>)

4.3. Additional Libraries 13

	Install Dependencies
	Folder Setup
	RaiSimLib
	RaiSimOgre
	PyBind11

	Install RSLGym
	Virtualenv
	PyTorch
	RSLGym
	Other Dependencies

	Examples
	RaiSim Cart Pole
	RaiSim ANYmal Bear
	OpenAI Gym

	Create Your Own Environment
	Building, Naming and Usage
	Debugging
	Additional Libraries

